If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2-7h=4
We move all terms to the left:
2h^2-7h-(4)=0
a = 2; b = -7; c = -4;
Δ = b2-4ac
Δ = -72-4·2·(-4)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9}{2*2}=\frac{-2}{4} =-1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9}{2*2}=\frac{16}{4} =4 $
| -10=5b+15 | | 3(2.4x+4)=4.1x+7=3.1x | | 9n+8n=34 | | 6y-14=4y+4 | | 7=-8v+3(v-6) | | 22=2d-2 | | n^2+5=54 | | 24=1/3x+16 | | −2(x+1)=2(x−1) | | 2x^2+4=40 | | u/8+11.5=-1.3 | | -4x-9-9=180 | | -1/5+p=1/10 | | -35=-7/2u | | 10x-1=63 | | y÷17 9=3 4 | | -4/9u=28 | | x2−7x+12=0 | | 15r-9-10=26 | | 24=x/3969•703 | | y/16/9=3/4 | | 3x+8=6-28 | | 6(x+5)=12(x-3) | | 5(4t+3)=4(7t-5)+3(9-2t) | | 8a-2=12+a2 | | F(x)=7x^2+5x-3 | | 2c+3=3c-14 | | 3x+8x-11=2x+5 | | 5x2-2x-39=0 | | 6x-7=8x+3 | | 6(2x+3)=9(1x-2) | | -r=-7–2r |